Bodypart Recognition Using Multi-stage Deep Learning

نویسندگان

  • Zhennan Yan
  • Yiqiang Zhan
  • Zhigang Peng
  • Shu Liao
  • Yoshihisa Shinagawa
  • Dimitris N. Metaxas
  • Xiang Sean Zhou
چکیده

Automatic medical image analysis systems often start from identifying the human body part contained in the image; Specifically, given a transversal slice, it is important to know which body part it comes from, namely "slice-based bodypart recognition". This problem has its unique characteristic--the body part of a slice is usually identified by local discriminative regions instead of global image context, e.g., a cardiac slice is differentiated from an aorta arch slice by the mediastinum region. To leverage this characteristic, we design a multi-stage deep learning framework that aims at: (1) discover the local regions that are discriminative to the bodypart recognition, and (2) learn a bodypart identifier based on these local regions. These two tasks are achieved by the two stages of our learning scheme, respectively. In the pre-train stage, a convolutional neural network (CNN) is learned in a multi-instance learning fashion to extract the most discriminative local patches from the training slices. In the boosting stage, the learned CNN is further boosted by these local patches for bodypart recognition. By exploiting the discriminative local appearances, the learned CNN becomes more accurate than global image context-based approaches. As a key hallmark, our method does not require manual annotations of the discriminative local patches. Instead, it automatically discovers them through multi-instance deep learning. We validate our method on a synthetic dataset and a large scale CT dataset (7000+ slices from wholebody CT scans). Our method achieves better performances than state-of-the-art approaches, including the standard CNN.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)

Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...

متن کامل

Targeting Ultimate Accuracy: Face Recognition via Deep Embedding

Face Recognition has been studied for many decades. As opposed to traditional hand-crafted features such as LBP and HOG, much more sophisticated features can be learned automatically by deep learning methods in a data-driven way. In this paper, we propose a two-stage approach that combines a multi-patch deep CNN and deep metric learning, which extracts low dimensional but very discriminative fe...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Environmental Noise Embeddings for Robust Speech Recognition

We propose a novel deep neural network architecture for speech recognition that explicitly employs knowledge of the background environmental noise within a deep neural network acoustic model. A deep neural network is used to predict the acoustic environment in which the system in being used. The discriminative embedding generated at the bottleneck layer of this network is then concatenated with...

متن کامل

Identification of Houseplants Using Neuro-vision Based Multi-stage Classification System

In this paper, we present a machine vision system that was developed on the basis of neural networks to identify twelve houseplants. Image processing system was used to extract 41 features of color, texture and shape from the images taken from front and back of the leaves. The features were fed into the neural network system as the recognition criteria and inputs. Multilayer perceptron (MLP) ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Information processing in medical imaging : proceedings of the ... conference

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2015